

Physical & Theoretical Chemistry

University of Wuppertal

Exploring the long-term Stability of Analyte Signals in Electrospray Mass Spectrometry through Ion Current Measurement and Optical Spray Monitoring

Chris Heintz, Walter Wißdorf, Hendrik Kersten, Thorsten Benter

- Electrospray Ionization (ESI) is a frequently used technique in atmospheric pressure ionization (API)
- Droplets containing analyte ions are generated by spraying a liquid solution into a strong electrical field supported by a nitrogen gas flow (nebulizer gas)
- \triangleright Recent experiments ^[1, 2] prove the existence of droplets far behind the ionization chamber, throughout the whole instrument (although textbooks suggest the release of bare ions solely inside the ionization chamber)

General Setup

Fig. 3 Schematic scheme of the used setup with an oscilloscope connected to an auxiliary SEM detector and Arduino microcontroller

> Fig. 4 Schematic 3Drendering of the orthogonal acceleration stage with auxiliary SEM detector in the moment of a TOF push

Observing Droplet Signatures in the High Vacuum Region

Ion current hitting the auxiliary SEM detector

Method of Optical Spray Observation

USB microscope camera module was installed to monitor the spray condition

- Interrupted by pusher as shown in Fig. 4 (sharp peaks)
- Only with ESI: super intense ion bursts occur with few Hz frequency
- Bursts of fragmented droplets (bursts be split by a push)

Fig. 5 Recorded oscillogram of three TOF measurement cycles

Fig. 6 Photo of the ESI needle during a measurement and edited versions to calculate the spray area

Results of Optical Spray Observation during long-term Measurements

- **Droplet signature occurrence frequency increases** reproducibly when switching from positive in negative ESI mode
- Every polarity switch comes with an **increase of spray** area (from positive to negative smaller than the other way), which seems to cause a higher droplet signature occurrence frequency

edits the image (A)

- Inside a manually chosen box all red pixels representing the spray were counted (marked as black pixels in Fig. 6C)
- Ratio of spray pixels to all other pixels is calculated

But: Not every increased spray area causes an increase in the droplet frequency (see 4)

Even with a **stable spray**, there are droplets signatures in the high vacuum region observable (see 3)

Correlation between **spray area and TIC** (see 1-8)

Fig. 6 Chromatograms of total ion count (TIC), droplet frequency, extracted ion count (EIC) for reserpine and the spray area (described in Fig. 5). Red areas mark periods of negative ESI mode.

References

[1] Markert, C., Thinius, M., Lehmann, L., Heintz, C., Stappert, F., Wissdorf, W., Kersten, H., Benter, T., Schneider, B. B., & Covey, T. R. (2021). Observation of charged droplets from electrospray ionization (ESI) plumes in API mass spectrometers. Analytical and Bioanalytical Chemistry, 413(22), 5587–5600. https://doi.org/10.1007/s00216-021-03452-y

[2] Heintz, C., Schnödewind, L., Braubach, O., Kersten, H., Benter, T., & Wißdorf, W. (2024). Observation of Large, Charged Droplet Signatures within the High-Vacuum Region of a Commercial Electrospray TOF-MS. Journal of the American Society for Mass Spectrometry. https://doi.org/10.1021/jasms.3c00383