Physikalische und theoretische Chemie

Prof. Ph.D. Per Jensen - Veröffentlichungen / Publications

Books / Bücher

P. R. Bunker and Per Jensen: "Fundamentals of Molecular Symmetry," IOP Publishing, Bristol, 2004 (ISBN 0-7503-0941-5).

P. R. Bunker and Per Jensen: "Molecular Symmetry and Spectroscopy, 2nd Edition," NRC Research Press, Ottawa, 1998 (ISBN 0-660-17519-3).
Russian translation by Drs. Yurii N. Panchenko, Sergei V. Petrov, Vladimir I. Pupyshev, Andrei V. Scherbinin, and Prof. Nikolai F. Stepanov (editor), MIR, Moscow, 2004.
Indian edition (2005). Contact overseas@del3.vsnl.net.in for information. Print on demand version available through Volumes

Books edited / Mitherausgeberschaft von Büchern

"Computational Molecular Spectroscopy" (Per Jensen and P. R. Bunker, Eds.), Wiley, Chichester, 2000 (ISBN 0-471-48998-0).

Book contributions / Buchbeiträge

10. K. M. T. Yamada, Per Jensen, and N. Ohashi: Fundamentals of Spectroscopy for Astrophysics, in: "Interstellar Molecules," Springer Tracts in Modern Physics, Vol. 241 (K. M. T. Yamada, G. Winnewisser, Eds.), Springer-Verlag Berlin Heidelberg, 2011 (ISBN 978-3-642-16267-1).

9. P. R. Bunker and Per Jensen: Spectroscopy and Broken Symmetry, in: "Frontiers of Molecular Spectroscopy," (J. Laane, Ed.), Elsevier, Amsterdam, 2008.

8. S. N. Yurchenko, J. Zheng, W. Thiel, M. Carvajal, H. Lin, and Per Jensen: Theoretical Quantitative Spectroscopy: Computer Simulation of Molecular Spectra, in: "Remote Sensing of the Atmosphere for Environmental Security" (Proceedings of the NATO Advanced Research Workshop in Rabat, Morocco, 16-19 November 2005, Edited by A. Perrin, N. Ben Sari Zizi, and J. Demaison; ISBN 1-4020-5089-5), Springer, Dordrecht, 2006.

7. P. R. Bunker and Per Jensen: Symmetry and Broken Symmetry in Molecules, Sample Chapter for Chemical Sciences, Engineering and Technology Resources, in: "Encyclopedia of Life Support Systems (EOLSS)," (J. Lagowski, Editor), Developed under the Auspices of the UNESCO, Eolss Publishers, Oxford, 2005 [http://www.eolss.net/Sample-Chapters/C06/E6-12A-02-06.pdf]

6. Per Jensen and P. R. Bunker: The Symmetry of Molecules, in: "Encyclopedia of Chemical Physics and Physical Chemistry" (J. H. Moore and N. D. Spencer, Eds.), IOP Publishing, Bristol, 2001.

5. P. R. Bunker and Per Jensen: The Born-Oppenheimer Approximation, in: "Computational Molecular Spectroscopy" (P. Jensen and P. R. Bunker, Eds.), Wiley, Chichester, 2000.

4. Per Jensen, G. Osmann, and P. R. Bunker: The Renner Effect, in: "Computational Molecular Spectroscopy" (P. Jensen and P. R. Bunker, Eds.), Wiley, Chichester, 2000.

3. Per Jensen, G. Osmann, and I. N. Kozin: The Formation of Four-fold Rovibrational Energy Clusters in H2S, H2Se, and H2Te, in: ``Advanced Series in Physical Chemistry: Vibration-Rotational Spectroscopy and Molecular Dynamics'' (D. Papoušek, Ed., ISBN 981-02-1635-1), vol. 9, pp. 298-351, World Scientific Publishing Company, Singapore, 1997.

2. Per Jensen: The MORBID Method, in: ``Molecules in the Stellar Environment'', Lecture Notes in Physics no. 428 (U. G. Jørgensen, Ed., ISBN 0-387-57747-5), Springer-Verlag, Berlin Heidelberg, 1994.

1. Per Jensen: Calculation of Molecular Rotation-Vibration Energies Directly from the Potential Energy Function, in: ``Methods in Computational Molecular Physics'' (Proceedings of NATO Advanced Study Institute, Bad Windsheim, Germany, 1991, Edited by S. Wilson and G.H.F. Diercksen, ISBN 0-306-44227-2), Plenum Press, New York, 1992.

Publications in peer-reviewed journals / Veröffentlichungen in Zeitschriften mit "Peer-Review"

 

227. Per Jensen: Reply to the comment by Amano on:“Linear and bent triatomic molecules are not qualitatively different!,” by Per Jensen, Can. J. Phys. 98, 506 (2020), Can. J. Phys., in press.

226. T. M. Mellor, S. N. Yurchenko, and Per Jensen: Artificial Symmetries for Calculating Vibrational Energies of Linear Molecules, Symmetry 13, 548/1-16 (2021). DOI: 10.3390/sym13040548 Open access: Abstract here. Download paper here.

225. Per Jensen: Linear and bent triatomic molecules are not qualitatively different!, Can. J. Phys., 98(6), 506-511 (2020). DOI: 10.1139/cjp-2019-0395.

224. Per Jensen, M. Spanner, and P. R. Bunker: The CO2 molecule is never linear, J. Mol. Structure, 1212, 128087 (2020) DOI: 10.1016/j.molstruc.2020.128087

223. P. R. Bunker and Per Jensen: The Planck Constant of Action hA, J. Q. S. R. T. 243, 106835 (2020). DOI: 10.1016/j.jqsrt.2020.106835

222. P. R. Bunker, I. M. Mills, and Per Jensen: The Planck Constant and Its Units, J. Q. S. R. T. 237, 106594 (2019). DOI: 10.1016/j.jqsrt.2019.106594

221. T. M. Mellor, S. N. Yurchenko, B. Mant, and Per Jensen: Transformation Properties under the Operations of the Molecular Symmetry Groups G36 and G36(EM) of Ethane H3CCH3, Symmetry 11, 862/1-37 (2019). DOI: 10.3390/sym11070862 Open access: Abstract here. Download paper here.

220. A. Y. Adam, Per Jensen, A. Yachmenev, and S. N. Yurchenko: Non-resonant Raman spectra of the methyl radical 12CH3 simulated in variational calculations, J. Mol. Spectrosc. 362, 77-83 (2019). DOI: 10.1016/j.jms.2019.06.005

219. T. Hirano, U. Nagashima, Per Jensen, and H. Li: Ro-vibrationally averaged dipole moments of linear triatomic molecules, J. Mol. Spectrosc. 362, 29-36 (2019). DOI: 10.1016/j.jms.2019.05.005

218. A. Y. Adam, A. Yachmenev, S. N. Yurchenko, and Per Jensen: A variationally computed IR line list for the methyl radical CH3, J. Phys. Chem. A 123, 4755-4763 (2019). Paper included in the Virtual Special Issue "Astrochemistry: From the Chemical Laboratory to the Stars", edited by Susanna L. Widicus Weaver and Eric Herbst, November 2019. DOI: 10.1021/acs.jpca.9b02919

217. G. Winterhoff, S. C. Galleguillos Kempf, Per Jensen, and P. R. Bunker: Empirical Potential Energy Surface and Bending Angle Probability Densities for the Electronic Ground State of HCO+, J. Mol. Spectrosc. 354, 71–82 (2018) DOI: 10.1016/j.jms.2018.10.004

216. K. L. Chubb, Per Jensen, and S. N. Yurchenko: Symmetry Adaptation of the Rotation-Vibration Theory for Linear Molecules, Symmetry 10, 137/1-23 (2018). DOI: 10.3390/sym10050137 Open access: Abstract here. Download paper here.

215. T. Hirano, U. Nagashima, and Per Jensen: Computational Molecular Spectroscopy of X2Π NCS: Electronic properties and ro-vibrationally averaged structure, J. Mol. Spectrosc. 346, 4–12 (2018). DOI: 10.1016/j.jms.2017.12.011

214. J. Freund, S. C. Galleguillos Kempf, Per Jensen, U. Nagashima, and T. Hirano: Computational Spectroscopy of NCS in the Renner-degenerate electronic state X2Π, J. Mol. Spectrosc. 345, 31–38 (2018). DOI: 10.1016/j.jms.2017.11.010

213. T. Hirano, U. Nagashima, and Per Jensen: Bending Wavefunctions for Linear Molecules, J. Mol. Spectrosc. 343, 54–61 (2018). DOI: 10.1016/j.jms.2017.06.012

212. H. Schmiedt, Per Jensen, and S. Schlemmer: The role of angular momentum in the superrotor theory for rovibrational motion of extremely flexible molecules, J. Mol. Spectrosc. 342, 132–137 (2017). DOI: 10.1016/j.jms.2017.06.002

211. H. Schmiedt, Per Jensen, and S. Schlemmer: Rotation-vibration motion of extremely flexible molecules - The molecular superrotor, Chem. Phys. Lett. 672, 34–46 (2017). DOI: 10.1016/j.cplett.2017.01.045 "Frontiers article" prepared by invitation.

210. H. Schmiedt, S. Schlemmer, S. N. Yurchenko, A. Yachmenev, and Per Jensen: A semi-classical approach to the calculation of highly excited rotational energies for asymmetric-top molecules, Phys. Chem. Chem. Phys. 19, 1847–1856 (2017). DOI: 10.1039/C6CP05589C Open access - download here

209. B. Ostojić, P. Schwerdtfeger, P. R. Bunker, and Per Jensen: An ab initio study of SbH2 and BiH2: The Renner Effect, Spin-Orbit Coupling, Local Mode Vibrations and Rovibronic Energy Level Clustering in SbH2, J. Mol. Spectrosc. 330, 130–141 (2016). DOI: 10.1016/j.jms.2016.03.004

208. H. Schmiedt, Per Jensen, and S. Schlemmer: Collective molecular superrotation: A model for extremely flexible molecules applied to protonated methane, Phys. Rev. Lett., 117, 223002/1-5 (2016). DOI: 10.1103/PhysRevLett.117.223002

207. V. V. Melnikov, S. N. Yurchenko, J. Tennyson, and Per Jensen: Radiative cooling of H3O+ and its deuterated isotopologues, Phys. Chem. Chem. Phys. 18, 26268-26274 (2016). DOI: 10.1039/C6CP04661D Open access - download here

206. H. Schmiedt, Per Jensen, and S. Schlemmer: Unifying the rotational and permutation symmetry of nuclear spin states: Schur-Weyl duality in molecular physics, J. Chem. Phys. 145, 074301/1-6 (2016). DOI: 10.1063/1.4960956

205. A. Y. Adam, A. Yachmenev, S. N. Yurchenko, and Per Jensen: Ro-vibrational averaging of the isotropic hyperfine coupling constant for the methyl radical, J. Chem. Phys. 143, 244306/1-7 (2015). DOI: 10.1063/1.4938253

204. V. V. Melnikov, S. N. Yurchenko, Per Jensen, and A. I. Potekaev: Development of a general approach to the modeling of free and confined polyatomic systems, Izvestiya vuz. Fizika 58, 8-11 (2015) [In Russian]. English translation as Russian Physics Journal 58, 1040-1043 (2015). DOI: 10.1007/s11182-015-0608-4

203. H. Schmiedt, S. Schlemmer, and Per Jensen: Symmetry of extremely floppy molecules: Molecular states beyond rotation-vibration separation, J. Chem. Phys. 143, 154302/1-8 (2015). DOI: 10.1063/1.4933001

202. I. Forsung Chi Mbapeh, S. C. Galleguillos Kempf, and Per Jensen: Spectroscopic Potential Energy Surfaces for the 12A′, 22A′, and 12A′′ Electronic States of BeOH, J. Phys. Chem. A 119, 10112−10123 (2015). DOI: 10.1021/acs.jpca.5b07410

201. A. Predoi-Cross and Per Jensen: Corrigendum: Foreword, Special issue: Mid- and Far-Infrared Spectroscopy: Techniques and Applications, Can. J. Phys. 93, 105-105 (2014). DOI: 10.1139/cjp-2014-0662

200. T. Hirano, M. Ben Dahman Andaloussi, U. Nagashima, and Per Jensen: Electronic structure and rovibrational properties of ZnOH in the X 2A′ electronic state: A computational molecular spectroscopy study, J. Chem. Phys. 141, 094308/1-14 (2014). DOI: 10.1063/1.4892895

199. D. S. Underwood, S. N. Yurchenko, J. Tennyson, and Per Jensen: Rotational spectrum of SO3 and theoretical evidence for the formation of rotational energy level clusters in its vibrational ground state, J. Chem. Phys. 140, 244316/1-10 (2014). DOI: 10.1063/1.4882865

198. B. Ostojić, Per Jensen, P. Schwerdtfeger, and P. R. Bunker: Singlet-triplet interaction in Group 2 M2O hypermetallic oxides, J. Mol. Spectrosc. 301, 20–24 (2014). DOI: 10.1016/j.jms.2014.05.003

197. K. J. Mascaritolo, J. M. Merritt, M. C. Heaven, and Per Jensen: Experimental and theoretical characterization of the 22A'-12A' transition of BeOH/D, J. Phys. Chem. A 117, 13654–13663 (2013). DOI: 10.1021/jp407655h

 

196. R. I. Ovsyannikov, T. Hirano, and Per Jensen: The Renner Effect in the X2A'' and Ã2A' Electronic States of HSO/HOS, J. Phys. Chem. A 117, 13450–13464 (2013). DOI: 10.1021/jp406940w Article prepared by invitation.

195. B. Ostojić, Per Jensen, P. Schwerdtfeger, and P. R. Bunker: The predicted spectrum and singlet-triplet interaction of the hypermetallic molecule SrOSr, J. Phys. Chem. A 117, 9370–9379 (2013). DOI: 10.1021/jp310531s

194. P. Singh, U. P. Verma, and Per Jensen: Phase transition from BCT to spinel structure in CdAl2Se4 and its optical properties, Journal of Physics and Chemistry of Solids 74, 1363–1368 (2013). DOI: 10.1016/j.jpcs.2013.04.010

193. J. Krieg, V. Lutter, C. P. Endres, I. H. Keppeler, Per Jensen, M. E. Harding, J. Vázquez, S. Schlemmer, T. F. Giesen, and S. Thorwirth: High-Resolution Spectroscopy of C3 around 3 μm, J. Phys. Chem. A 117, 3332–3339 (2013). DOI: 10.1021/jp3119204

192. P. Singh, U. P. Verma, and Per Jensen: Pressure and temperature induced structural, electronic and thermal properties of CdAl2Se4, Solid State Communications 152, 624-629 (2012). DOI: 10.1016/j.ssc.2012.01.009

191. T. Hirano, R. Okuda, U. Nagashima, and Per Jensen: Geometries and electronic structures of the ground and low-lying excited states of FeCO: an ab initio study, J. Chem. Phys. 137, 244303/1-13 (2012). DOI: 10.1063/1.4769283

190. B. Ostojić, P. R. Bunker, P. Schwerdtfeger, A. Gertych, and Per Jensen: The predicted infrared spectrum of the hypermetallic molecule CaOCa in its lowest two electronic states X1Σg+and a3Σu+, J. Mol. Structure 1023, 101-107 (2012). DOI: 10.1016/j.molstruc.2012.03.048

189. Per Jensen: Local modes in vibration-rotation spectroscopy, WIREs Comput. Mol. Sci. (Wiley Interdisciplinary Reviews) 2, 494–512 (2012). DOI: 10.1002/wcms.1089 "Advanced review" prepared by invitation.

188. U. P. Verma, P. Singh, and Per Jensen: Theoretical study on pressure induced phase transition and thermal properties of HgAl2Se4, Physica Status Solidi B 248, 2801–2808 (2011). DOI: 10.1002/pssb.201147084

187. U. P. Verma, M. Sharma and Per Jensen: Ab initio study of the properties of CuAlSe2: A chalcopyrite compound, Zeitschrift für Kristallographie 226, 814-821 (2011). DOI: 10.1524/zkri.2011.1417

186. U. P. Verma, Per Jensen, M. Sharma, and P. Singh: Ab initio studies of structural, electronic, optical and thermal properties of CuAlS2 chalcopyrite, Computational and Theoretical Chemistry 975, 122-127 (2011). DOI: 10.1016/j.comptc.2011.03.008

185. S. N. Yurchenko, R. J. Barber, J. Tennyson, W. Thiel, and Per Jensen: Towards efficient refinement of molecular potential energy surfaces: Ammonia as a case study, J. Mol. Spectrosc. 268, 123-129 (2011). DOI: 10.1016/j.jms.2011.04.005

184. U. P. Verma, N. Devi, S. Sharma, and Per Jensen: Spin-polarized first-principles study of ferromagnetism in zinc-blende In1−xMnxSb, Eur. Phys. J. B 81, 381–386 (2011). DOI: 10.1140/epjb/e2011-20047-8

183. P. Singh, U. P. Verma, and Per Jensen: Electronic and optical properties of defect chalcopyrite HgAl2Se4, Journal of Physics and Chemistry of Solids 12, 1414–1418 (2011). DOI: 10.1016/j.jpcs.2011.08.013

182. A. Yachmenev, S. N. Yurchenko, Per Jensen, and W. Thiel: A new spectroscopic potential energy surface for formaldehyde in its ground electronic state, J. Chem. Phys. 134, 244307/1-11 (2011). DOI: 10.1063/1.3599927

181. U. P. Verma, P. Singh, and Per Jensen: A study of the electronic, optical and thermal properties for ZnAl2Se4 using the FP-LAPW method, Physica Status Solidi B 248, 1682–1689 (2011). DOI: 10.1002/pssb.201046389

180. B. Ostojić, P. R. Bunker, P. Schwerdtfeger, B. Assadollahzadeh, and Per Jensen: The predicted spectrum of the hypermetallic molecule MgOMg, Phys. Chem. Chem. Phys. 13, 7546–7553 (2011). DOI: 10.1039/c0cp02996c

179. P. Singh, M. Sharma, U. P. Verma, and Per Jensen: Pressure effects on energy gaps and phase transitions in ZnAl2Se4, Zeitschrift für Kristallographie 225, 508-513 (2010). DOI: 10.1524/zkri.2010.1301

178. U. P. Verma, Mohini, P. S. Bisht, and Per Jensen: Ab initio studies of structural, electronic, magnetic and mechanical properties of alkali earth metal silicides, Semicond. Sci. Technol. 25, 105002/1-8 (2010). DOI: 10.1088/0268-1242/25/10/105002

177. T. Hirano, V. Derpmann, U. Nagashima, and Per Jensen: Large amplitude bending motion in CsOH, studied through ab initio-based three-dimensional potential energy functions, J. Mol. Spectrosc. 263, 150-159 (2010). DOI: 10.1016/j.jms.2010.07.009

176. B. Ostojić, Per Jensen, P. Schwerdtfeger, B. Assadollahzadeh, and P. R. Bunker: The predicted infrared spectrum of the hyperberyllium molecule BeOBe in its X1Σg+and a3Σu+ electronic states, J. Mol. Spectrosc. 263, 21-26 (2010). DOI: 10.1016/j.jms.2010.06.008

175. A. Yachmenev, S. N. Yurchenko, Per Jensen, O. Baum, T. F. Giesen, and W. Thiel: Theoretical rotation-torsion spectra of HSOH, Phys. Chem. Chem. Phys. 12, 8387 - 8397 (2010). DOI: 10.1039/c002803g

174. S. N. Yurchenko, M. Carvajal, A. Yachmenev, W. Thiel, and Per Jensen: A theoretical-spectroscopy, ab-initio-based study of the electronic ground state of 121SbH3, J. Q. S. R. T. 111, 2279-2290 (2010). DOI: 10.1016/j.jqsrt.2010.03.008

173. A. Yachmenev, S. Yurchenko, I. Paidarová, Per Jensen, W. Thiel, and S. Sauer: Thermal averaging of the indirect nuclear spin-spin coupling constants of ammonia: the importance of the large amplitude inversion mode, J. Chem. Phys. 132, 114305/1-15 (2010). DOI: 10.1063/1.3359850

172. T. Hirano, U. Nagashima, G. Winnewisser, and Per Jensen: Electronic structures and rovibronically averaged geometries of the X6A' and Ã6A'' states of FeOH, J. Chem. Phys. 132, 094303/1-10 (2010). DOI: 10.1063/1.3317405

171. S. N. Yurchenko, R. J. Barber, A. Yachmenev, W. Thiel, Per Jensen, and J. Tennyson: A variationally computed T=300 K line list for NH3, J. Phys. Chem. A 113, 11845-11855 (2009). DOI: 10.1021/jp9029425

170. S. N. Yurchenko, A. Yachmenev, W. Thiel, O. Baum, T. F. Giesen, V. V. Melnikov, and Per Jensen: An ab initio calculation of the vibrational energies and transition moments of HSOH, J. Mol. Spectrosc. 257, 57-65 (2009). DOI: 10.1016/j.jms.2009.06.010

169. S. N. Yurchenko, R. I. Ovsyannikov, W. Thiel, and Per Jensen: Rotation-Vibration Energy Cluster Formation in XH2D and XHD2 Molecules (X = Bi, P, and Sb), J. Mol. Spectrosc. 256, 119-127 (2009). DOI: 10.1016/j.jms.2009.03.001

168. T. Hirano, P. R. Bunker, S. Patchkovskii, U. Nagashima, and Per Jensen: The Predicted Spectrum of FeOH in Its Renner-degenerate X6A' and Ã6A'' Electronic States, J. Mol. Spectrosc. 256, 45-52 (2009). DOI: 10.1016/j.jms.2009.01.013

167. R. I. Ovsyannikov, Per Jensen, M. Yu. Tretyakov, and S. N. Yurchenko: On the Use of the Finite Difference Method in a Calculation of Vibration-Rotation Energies, Optika i Spektroskopiya 107, 236-243 (2009) [in Russian]. English translation as Optics and Spectroscopy 107, 221-227 (2009). DOI: 10.1134/S0030400X09080104

166. V. V. Melnikov, Per Jensen, and T. Hirano: Calculation of Rovibronic Intensities for Triatomic Molecules in Double-Renner-degenerate Electronic States. Application to the X2A'' and Ã2A' Electronic States of HO2, J. Chem. Phys. 130, 224105/1-9 (2009). DOI: 10.1063/1.3139916

165. K. M. T. Yamada, Per Jensen, S. C. Ross, O. Baum, T. F. Giesen, and S. Schlemmer: The torsional and asymmetry splittings in HSOH, J. Mol. Structure 927, 96-100 (2009). DOI: 10.1016/j.molstruc.2009.02.022

164. R. I. Ovsyannikov, W. Thiel, S. N. Yurchenko, M. Carvajal, and Per Jensen: PH3 revisited: Theoretical transition moments for the vibrational transitions below 7000 cm-1, J. Mol. Spectrosc. 252, 121-128 (2008). DOI: 10.1016/j.jms.2008.07.005

163. R. I. Ovsyannikov, V. V. Melnikov, W. Thiel, Per Jensen, O. Baum. T. F. Giesen, and S. N. Yurchenko: Theoretical rotation-torsion energies of HSOH, J. Chem. Phys. 129, 154314/1-9 (2008). DOI: 10.1063/1.2992050

162. R. I. Ovsyannikov, W. Thiel, S. N. Yurchenko, M. Carvajal, and Per Jensen: Vibrational energies of PH3 calculated variationally at the complete basis set limit, J. Chem. Phys. 129, 044309/1-8 (2008). DOI: 10.1063/1.2956488

161. T. Hirano, R. Okuda, U. Nagashima, and Per Jensen: Computational Molecular Spectroscopy for X2Δ NiCN: Large Amplitude Bending Motion, J. Mol. Spectrosc. 250, 33-43 (2008). DOI: 10.1016/j.jms.2008.04.001

160. S. N. Yurchenko, W. Thiel, M. Carvajal, and Per Jensen: Ab initio potential energy surface, electric dipole moment, polarizability tensor, and theoretical rovibrational spectra in the electronic ground state of 14NH3+, Chem. Phys., 346, 146-159 (2008). DOI: 10.1016/j.chemphys.2008.01.052

159. T. Hirano, R. Okuda, U. Nagashima, K. Tanaka, and Per Jensen: Ab Initio Molecular Orbital Study of Ground and Low-Lying Electronic States of NiCN, Chem. Phys., 346, 13-22 (2008). DOI: 10.1016/j.chemphys.2008.01.022

158. V. V. Melnikov, T. E. Odaka, Per Jensen, and T. Hirano: The Double Renner Effect in the X2A'' and Ã2A' Electronic States of HO2, J. Chem. Phys. 128, 114316/1-10 (2008). DOI: 10.1063/1.2827490

157. S. N. Yurchenko, W. Thiel, and Per Jensen: Theoretical ROVibrational Energies (TROVE): A robust numerical approach to the calculation of ro-vibrational energies for polyatomic molecules, J. Mol. Spectrosc. 245, 126-140 (2007). DOI: 10.1016/j.jms.2007.07.009

156. P. R. Bunker, W. P. Kraemer, S. N. Yurchenko, W. Thiel, C. F. Neese, J. L. Gottfried, and Per Jensen: New potential energy surfaces for the X and A states of CH2+, Mol. Phys. 105, 1369-1376 (2007). DOI: 10.1080/00268970701344534

155. V. Rai-Constapel, H.-P. Liebermann, R. J. Buenker, M. Honigmann, and Per Jensen: A Theoretical Study of TeOH in Its Electronic Ground State, J. Mol. Spectrosc. 244, 102-108 (2007). DOI: 10.1016/j.jms.2007.05.004

154. T. Hirano, M. Amano, Y. Mitsui, S. S. Itono, R. Okuda, U. Nagashima, and Per Jensen: A Theoretical Study of FeCN in the 6Δ Electronic Ground State, J. Mol. Spectrosc. 243, 267-279 (2007). DOI: 10.1016/j.jms.2007.02.005

153. T. Hirano, R. Okuda, U. Nagashima, Y. Nakashima, K. Tanaka, and Per Jensen: A theoretical study of BrCN+ in the 2Π electronic ground state: Large amplitude bending motion, J. Mol. Spectrosc. 243, 202-218 (2007). DOI: 10.1016/j.jms.2007.02.006

152. T. Hirano, R. Okuda, U. Nagashima, and Per Jensen: Ab Initio Molecular Orbital Study of Ground and Low-Lying Electronic States of CoCN, J. Chem. Phys. 127, 014303/1-7 (2007). DOI: 10.1063/1.2723110

151. T. Hirano, R. Okuda, U. Nagashima, and Per Jensen: A Theoretical Study of CoCN in the 3Φ Electronic Ground State, Mol. Phys. 105, 599-611 (2007). DOI: 10.1080/00268970601126734

150. T. E. Odaka, V. V. Melnikov, Per Jensen, T. Hirano, B. Lang, and P. Langer: Theoretical Study of the Double Renner Effect for Ã2Π MgNC/MgCN: Higher Excited Rovibrational States, J. Chem. Phys. 126, 094301/1-9 (2007). DOI: 10.1063/1.2464094

149. S. N. Yurchenko, W. Thiel, and Per Jensen: Rotational energy cluster formation in XY3 molecules: Excited vibrational states of BiH3 and SbH3, J. Mol. Spectrosc. 240, 197-210 (2006). DOI: 10.1016/j.jms.2006.10.002

148. S. N. Yurchenko, W. Thiel, Per Jensen, and P. R. Bunker: Rotation-vibration energy level clustering in the X2B1 ground electronic state of PH2, J. Mol. Spectrosc. 239, 160-173 (2006). DOI: 10.1016/j.jms.2006.07.002

147. S. N. Yurchenko, M. Carvajal, W. Thiel, and Per Jensen: Ab initio dipole moment and theoretical rovibrational intensities in the electronic ground state of PH3, J. Mol. Spectrosc. 239, 71-87 (2006). DOI: 10.1016/j.jms.2006.06.001

146. T. E. Odaka, Per Jensen, and T. Hirano: The Double Renner Effect: A Theoretical Study of the MgNC/MgCN Isomerization in the Ã2Π Electronic State, J. Mol. Structure 795, 14-41 (2006). DOI: 10.1016/j.molstruc.2005.10.059

145. P. R. Bunker, R. Guérout, Z. J. Jakubek, Per Jensen, and S. N. Yurchenko: The rovibronic energies of the SiNSi radical in its X2Πg electronic state, J. Mol. Structure 795, 9-13 (2006). DOI: 10.1016/j.molstruc.2006.02.014

144. T. Hirano, R. Okuda, U. Nagashima, V. Špirko, and Per Jensen: A Theoretical Study of FeNC in the 6Δ Electronic Ground State, J. Mol. Spectrosc. 236, 234-247 (2006). DOI: 10.1016/j.jms.2006.02.002

143. Z. J. Jakubek, P. R. Bunker, M. Zachwieja, S. G. Nakhate, B. Simard, S. N. Yurchenko, W. Thiel, and Per Jensen: A Dispersed Fluorescence and Ab Initio Investigation of the X2B1 and Ã2A1 Electronic States of the PH2 Molecule, J. Chem. Phys. 124, 094306/1-5 (2006). DOI: 10.1063/1.2168155

142. R. Guérout, P. R. Bunker, Per Jensen, and W.P. Kraemer: A calculation of the rovibronic energies and spectrum of the B1A1 electronic state of SiH2, J. Chem. Phys. 123, 244312/1-8 (2005). DOI: 10.1063/1.2139676

141. S. N. Yurchenko, J. Zheng, H. Lin, P. Jensen, and W. Thiel: Potential energy surface for the electronic ground state of NH3 up to 20000 cm-1 above equilibrium, J. Chem. Phys. 123, 134308/1-14 (2005). DOI: 10.1063/1.2047572

140. S. N. Yurchenko, W. Thiel, M. Carvajal, H. Lin, and Per Jensen: Rotation-Vibration Motion of Pyramidal XY3 Molecules Described in the Eckart Frame: The Calculation of Intensities with Application to NH3, Adv. Quant. Chem. 48, 209-238 (2005). DOI: 10.1016/S0065-3276(05)48014-4 Article prepared by invitation.

139. S. N. Yurchenko, M. Carvajal, H. Lin, J. J. Zheng, W. Thiel, and Per Jensen: Dipole moment and rovibrational intensities in the electronic ground state of NH3: Bridging the gap between ab initio theory and spectroscopic experiment, J. Chem. Phys. 122, 104317 (2005). DOI: 10.1063/1.1862620

138. S. N. Yurchenko, P. R. Bunker, and Per Jensen: Coulomb Explosion Imaging: The CH3+ and H3O+ Molecules, J. Mol. Structure 742, 43-48 (2005). DOI: 10.1016/j.molstruc.2004.11.092

137. S. N. Yurchenko, W. Thiel, S. Patchkovskii, and Per Jensen: Theoretical Evidence for the Formation of Rotational Energy Level Clusters in the Vibrational Ground State of PH3, Phys. Chem. Chem. Phys. 7, 573-582 (2005). DOI: 10.1039/B418073A

136. S. N. Yurchenko, M. Carvajal, Per Jensen, H. Lin, J. Zheng, and W. Thiel: Rotation-vibration motion of pyramidal XY3 molecules described in the Eckart frame: Theory and application to NH3, Mol. Phys. 103, 359-378 (2005). DOI: 10.1080/002689705412331517255

135. P. R. Bunker and Per Jensen: Chirality in Rotational Energy Level Clusters, J. Mol. Spectrosc. 228, 640-644 (2004). DOI: 10.1016/j.jms.2004.02.027

134. S. N. Yurchenko, P. R. Bunker, W. P. Kraemer, and Per Jensen: The spectrum of singlet SiH2, Can. J. Chem. 82, 694-708 (2004). DOI: 10.1139/v04-030

133. S. Brünken, E. A. Michael, F. Lewen, T. Giesen, H. Ozeki, G. Winnewisser, Per Jensen, and E. Herbst: High Resolution Terahertz Spectrum of CH2: Low J Rotational Transitions Near 2 THz, Can. J. Chem. 82, 676-683 (2004). DOI: 10.1139/v04-034

132. V. V. Melnikov and Per Jensen: Potential energy surface and spectroscopic parameters of X3Σ- CNN, Chem. Phys. Lett. 394, 171-175 (2004). DOI: 10.1016/j.cplett.2004.06.129

131. O. N. Ulenikov, E. S. Bekhtereva, N. A. Sanzharov, and Per Jensen: A Refined Potential Energy Function for the Electronic Ground State of H2Se, J. Mol. Spectrosc. 227, 1-12 (2004). DOI: 10.1016/j.jms.2004.04.012

130. K. M. T. Yamada, G. Winnewisser, and Per Jensen: Internal Rotation Tunneling in HSOH, J. Mol. Structure 695-696, 323-337 (2004). DOI: 10.1016/j.molstruc.2003.12.042

129. O. Bludský, V. Špirko, T. E. Odaka, Per Jensen, and T. Hirano: A theoretical study of the MgNC/MgCN isomerization in the electronic ground state, J. Mol. Structure 695-696, 219-226 (2004). DOI: 10.1016/j.molstruc.2003.11.049

128. S. Wu, Y. Chen, X. Yang, Y. Guo, Y. Liu, Y. Li, R. J. Buenker, and Per Jensen: Vibronic Transition Moments and Line Intensities in H2O+, J. Mol. Spectrosc. 225, 96-106 (2004). DOI: 10.1016/j.jms.2004.02.011

127. S. N. Yurchenko, M. Carvajal, Per Jensen, F. Herregodts, and T. R. Huet: Potential parameters of PH3 obtained by simultaneous fitting of ab initio data and experimental vibrational band origins, Chem. Phys. 290, 59-67 (2003). DOI: 10.1016/S0301-0104(03)00098-3

126. Per Jensen, W. P. Kraemer, and P. R. Bunker, Transition moments and NH2 cometary spectra, Mol. Phys. 101, 613-622 (2003). DOI: 10.1080/0026897021000021840

125. H. Lin, W. Thiel, S. N. Yurchenko, M. Carvajal, and Per Jensen: Vibrational energies for NH3 based on high level ab initio potential energy surfaces, J. Chem. Phys. 117, 11265-11276 (2002). DOI: 10.1063/1.1521762

124. P. R. Bunker, W. P. Kraemer, Per Jensen, Y.-C. Lee, and Y.-P. Lee, The Matrix Isolation Spectrum of the CH2+ Ion, J. Mol. Spectrosc. 216, 419-423 (2002). DOI: 10.1006/jmsp.2002.8636

123. T. E. Odaka, T. Hirano, and Per Jensen: A Theoretical Study of Ã2Π MgCN, J. Mol. Spectrosc. 216, 379-396 (2002). DOI: 10.1006/jmsp.2002.8633

122. T. Hirano, K. Ishii, T. E. Odaka, and Per Jensen: A Theoretical Study of MgNC and MgCN in the X2Σ+ Electronic State, J. Mol. Spectrosc. 215, 42-57 (2002). DOI: 10.1006/jmsp.2002.8598

121. Per Jensen, S. S. Wesolowski, N. R. Brinkmann, N. A. Richardson, Y. Yamaguchi, H. F. Schaefer III, and P. R. Bunker: A Theoretical Study of ã4A2 CH2+, J. Mol. Spectrosc. 211, 254-261 (2002). DOI: 10.1006/jmsp.2001.8503

120. T. E. Odaka, T. Hirano, and Per Jensen: An Ab Initio Study of the Ã2Π and the Ã2Π ← X2Σ+ Electronic Transition of MgNC, J. Mol. Spectrosc. 211, 147-161 (2002). DOI: 10.1006/jmsp.2001.8485

119. Per Jensen, T. E. Odaka, W. P. Kraemer, T. Hirano, and P. R. Bunker: The Renner Effect in Triatomic Molecules with Application to CH2+, MgNC and NH2, Spectrochimica Acta Part A 58, 763-794 (2002). DOI: 10.1016/S1386-1425(01)00668-0

118. U.G. Jørgensen, Per Jensen, G.O. Sørensen, and B. Aringer: H2O in Stellar Atmospheres, Astronomy & Astrophysics 372, 249-259 (2001). DOI: 10.1051/0004-6361:20010285

117. S. N. Yurchenko, Per Jensen, Y. Li, R. J. Buenker, and P. R. Bunker: The Near Ultraviolet Band System of Singlet Methylene, J. Mol. Spectrosc. 208, 136-143 (2001). DOI: 10.1006/jmsp.2001.8371

116. P. R. Bunker, M.-C. Chan, W. P. Kraemer, and Per Jensen: Predicted Rovibronic Spectra of CH2+ and CD2+, Chem. Phys. Lett. 341, 358-362 (2001). DOI: 10.1016/S0009-2614(01)00498-5

115. Per Jensen, R. J. Buenker, J.-P, Gu, G. Osmann and P. R. Bunker: Refined Potential Energy Surfaces for the X2A'' and A2A' Electronic States of the HO2 Molecule, Can. J. Phys. 79, 641-652 (2001). DOI: 10.1139/p01-018

114. Per Jensen: An Introduction to the Theory of Local Mode Vibrations, Mol. Phys. 98, 1253-1285 (2000). DOI: 10.1080/002689700413532 Article prepared by invitation.

113. Vl. G. Tyuterev, T. Cours, S. A. Tashkun, A. Barbe, and Per Jensen: Potential Function of the Ozone Molecule: Global Calculation of the Rovibrational States and the Dissociation Behaviour, SPIE Proceeding Series, Publications of the International Society for Optical Engineering, Washington 4063, 142-151 (2000). DOI: 10.1117/12.375367

112. O. Bludský, P. Nachtigall, J. Hrušák, and Per Jensen: The Calculation of the Vibrational States of SO2 in the C1B2 Electronic State up to the SO(3Σ-)+O(3P) Dissociation Limit, Chem. Phys. Lett. 318, 607-613 (2000). DOI: 10.1016/S0009-2614(00)00015-4

111. G. Osmann, P. R. Bunker, W. P. Kraemer, and Per Jensen: Coulomb Explosion Imaging: The CH2+, H2O+ and NH2+ Ions as Benchmarks, Chem. Phys. Lett. 318, 597-606 (2000). DOI: 10.1016/S0009-2614(00)00051-8

110. Vl. G. Tyuterev, S. Tashkun, D. W. Schwenke, Per Jensen, T. Cours, A. Barbe, and M. Jacon: Variational EKE Calculations of Rovibrational Energies of the Ozone Molecule from an Empirical Potential Function, Chem. Phys. Lett. 316, 271-279 (2000). DOI: 10.1016/S0009-2614(99)01228-2

109. A. L. L. East, H. Liu, E. C. Lim, Per Jensen, I. Déchène, M. Z. Zgierski, W. Siebrand, and P. R. Bunker: Toluene Internal Rotation: Measurement and Simulation of 0.5 K High-Resolution Fluorescence Excitation Spectra, J. Chem. Phys. 112, 167-175 (2000). DOI: 10.1063/1.480571

108. J.-P. Gu, G. Hirsch, R. J. Buenker, M. Brumm, G. Osmann, P. R. Bunker, and Per Jensen: A Theoretical Study of the Absorption Spectrum of Singlet CH2, J. Mol. Structure 517, 247-264 (2000). DOI: 10.1016/S0022-2860(99)00256-2

107. P. R. Bunker, O. Bludský, Per Jensen, S. S. Wesolowski, T. J. Van Huis, Y. Yamaguchi, and H. F. Schaefer III: The H2O++ Ground State Potential Energy Surface, J. Mol. Spectrosc. 198, 371-375 (1999). DOI: 10.1006/jmsp.1999.7970

106. Vl. G. Tyuterev, S. Tashkun, Per Jensen, A. Barbe, and T. Cours: Determination of the Effective Ground-state Potential Energy Function of Ozone from High Resolution Infrared Spectra, J. Mol. Spectrosc. 198, 57-76 (1999). DOI: 10.1006/jmsp.1999.7928

105. G. Osmann, P. R. Bunker, Per Jensen, R. J. Buenker, J.-P. Gu, and G. Hirsch: A Theoretical Investigation of the Renner Interactions and Magnetic Dipole Transitions in the à - X Electronic Band System of HO2, J. Mol. Spectrosc. 197, 262-274 (1999). DOI: 10.1006/jmsp.1999.7919

104. Per Jensen and P. R. Bunker: Nuclear Spin Statistical Weights Revisited, Mol. Phys. 97, 821-824 (1999). DOI: 10.1080/00268979909482882

103. G. Osmann, P. R. Bunker, W. P. Kraemer, and Per Jensen: Coulomb Explosion Imaging and the CH2+ Molecule, Chem. Phys. Lett. 309, 299-306 (1999). DOI: 10.1016/S0009-2614(99)00682-X

102. P. R. Bunker and Per Jensen: Spherical Top Molecules and the Molecular Symmetry Group, Mol. Phys. 97, 255-264 (1999). DOI: 10.1080/00268979909482827

101. G. Osmann, P. R. Bunker, Per Jensen, and W. P. Kraemer: An Ab Initio Study of the NH2+ Absorption Spectrum, J. Mol. Spectrosc. 186, 319-334 (1997). DOI: 10.1006/jmsp.1997.7452

100. G. Osmann, P. R. Bunker, Per Jensen, and W. P. Kraemer: A Theoretical Calculation of the Absorption Spectrum of CH2+, Chem. Phys. 225, 33-54 (1997). DOI: 10.1016/S0301-0104(97)00173-0

99. P. C. Gómez, L. F. Pacios, and Per Jensen: Fourfold Clusters of Rovibrational Energies in H2Po Studied with an ab initio Potential Energy Function, J. Mol. Spectrosc. 186, 99-104 (1997). DOI: 10.1006/jmsp.1997.7434

98. P. C. Gómez and Per Jensen: A Potential Energy Surface for the Electronic Ground State of H2Te Derived from Experiment, J. Mol. Spectrosc. 185, 282-289 (1997). DOI: 10.1006/jmsp.1997.7386

97. J. H. Schryber, O. L. Polyansky, Per Jensen, and J. Tennyson: On the Spectroscopically Determined Potential Energy Surfaces for the Electronic Ground States of NO2 and H2O, J. Mol. Spectrosc. 185, 234-243 (1997). DOI:
10.1006/jmsp.1997.7407

96. I. N. Kozin and Per Jensen: The Effects of the Nonzero Total Electron Spin in the X3B1 State of Methylene CH2, J. Mol. Spectrosc. 183, 398-406 (1997). DOI: 10.1006/jmsp.1997.7288

95. O. Bludský and Per Jensen: The Calculation of the Bound and Quasibound Vibrational States of Ozone in its 1B2 Electronic State, Mol. Phys. 91, 653-661 (1997). DOI: 10.1080/002689797171148

94. Per Jensen, I. Paidarová, V. Špirko, and S. P. A. Sauer: Theoretical Calculations of the Hyperfine Structure in the Spectra of H3+ and its Deuterated Isotopomers, Mol. Phys. 91, 319-332 (1997). DOI: 10.1080/002689797171616

93. V. Špirko, M. Mengel, and Per Jensen: Calculation of Rotation-Vibration Energy Levels in Ground State C3 by a Born-Oppenheimer-Type Separation of the Vibrational Motions, J. Mol. Spectrosc. 183, 129-138 (1997). DOI: 10.1006/jmsp.1996.7257

92. Per Jensen: Theoretical Rotation-Vibration Energies of X3 B1 NH2+, J. Mol. Spectrosc. 181, 207-214 (1997). DOI: 10.1006/jmsp.1996.7159

91. I. N. Kozin, Per Jensen, Y. Li, R. J. Buenker, G. Hirsch, and S. Klee: An ab initio Calculation of the Dipole Moment Surfaces and the Vibrational Transition Moments of the H2Te Molecule, J. Mol. Spectrosc. 181, 108-118 (1997). DOI: 10.1006/jmsp.1996.7145

90. P. R. Bunker, Per Jensen, Y. Yamaguchi, and H. F. Schaefer III: High-Level ab Initio Calculation of the Rotation-Vibration Energies in the c 1 A1 State of Methylene, CH2, J. Phys. Chem. 100, 18088-18092 (1996). DOI: 10.1021/jp961993j

89. I. N. Kozin, Per Jensen, O. Polanz, S. Klee, L. Poteau, and J. Demaison: The Rotational Spectrum of H2Te, J. Mol. Spectrosc. 180, 402-413 (1996). DOI: 10.1006/jmsp.1996.0264

88. O. L. Polyansky, Per Jensen, and J. Tennyson: The Potential Energy Surface of H216O, J. Chem. Phys. 105, 6490-6497 (1996). DOI: 10.1063/1.472501

87. P. R. Bunker, Per Jensen, Y. Yamaguchi, and H. F. Schaefer III: The c 1 A1 State of Methylene CH2, J. Mol. Spectrosc. 179, 263-268 (1996). DOI: 10.1006/jmsp.1996.0205

86. O. L. Polyansky, Per Jensen, and J. Tennyson: The Potential Energy Surface of Hydrogen Sulfide, J. Mol. Spectrosc. 178, 184-188 (1996). DOI: 10.1006/jmsp.1996.0172

85. J.-P. Gu, R. J. Buenker, G. Hirsch, Per Jensen, and P. R. Bunker: An ab initio Calculation of BH2- Rovibronic Energies: a Very Small Singlet-Triplet Splitting, J. Mol. Spectrosc. 178, 172-183 (1996). DOI: 10.1006/jmsp.1996.0171

84. M. Kolbuszewski, P. R. Bunker, W. P. Kraemer, G. Osmann, and Per Jensen: An ab initio Calculation of the Rovibronic Energies of the BH2 Molecule, Mol. Phys. 88, 105-124 (1996). DOI: 10.1080/00268979650026622

83. P. R. Bunker, M. Kolbuszewski, Per Jensen, M. Brumm, M. A. Anderson, W. L. Barclay Jr., L. M. Ziurys, Y. Ni, and D. O. Harris: New Rovibrational Data for MgOH and MgOD and the Internuclear Potential Function of the Ground Electronic State, Chem. Phys. Lett. 239, 217-222 (1995). DOI: 10.1016/0009-2614(95)00479-N

82. Per Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker: An ab initio Calculation of the Rovibronic Energies of the CH2+ Molecule, J. Mol. Spectrosc. 172, 194-204 (1995). DOI: 10.1006/jmsp.1995.1166

81. J.-M. Flaud, C. Camy-Peyret, H. Bürger, Per Jensen, and I. N. Kozin: Experimental Evidence for the Formation of Fourfold Rovibrational Energy Clusters in the ν13 Vibrational States of H280Se, J. Mol. Spectrosc. 172, 126-134 (1995). DOI: 10.1006/jmsp.1995.1161

80. Per Jensen, M. Brumm, W. P. Kraemer, and P. R. Bunker: A Treatment of the Renner Effect Using the MORBID Hamiltonian, J. Mol. Spectrosc. 171, 31-57 (1995). DOI: 10.1006/jmsp.1995.1101

79. M. Kolbuszewski, P. R. Bunker, and Per Jensen: The Potential Energy Function of CS2 Derived from Rovibrational Data, J. Mol. Spectrosc. 170, 158-165 (1995). DOI: 10.1006/jmsp.1995.1062

78. M. Mengel and Per Jensen: A Theoretical Study of the Stark Effect in Triatomic Molecules: Application to H2O, J. Mol. Spectrosc. 169, 73-91 (1995). DOI: 10.1006/jmsp.1995.1007

77. Per Jensen, Yan Li, G. Hirsch, R. J. Buenker, T. J. Lee, and I. N. Kozin: Fourfold Clusters of Rovibrational Energies in H2Te Studied with an ab initio Potential Energy Function, Chem. Phys. 190, 179-189 (1995). DOI: 10.1016/0301-0104(94)00262-9

76. Per Jensen, S. A. Tashkun, and Vl. G. Tyuterev: A Refined Potential Energy Surface for the Electronic Ground State of the Water Molecule, J. Mol. Spectrosc. 168, 271-289 (1994). DOI: 10.1006/jmsp.1994.1277

75. W. P. Kraemer, Per Jensen, and P. R. Bunker: An ab initio Calculation of the Vibronic Energies of the CH2+ Molecule, Can. J. Phys. 72, 871-878 (1994). DOI: 10.1139/p94-114

74. O. L. Polyansky, Per Jensen, and J. Tennyson: A Spectroscopically Determined Potential Energy Surface for the Ground State of H216O: A New Level of Accuracy, J. Chem. Phys. 101, 7651-7657 (1994). DOI: 10.1063/1.468258

73. J. Almlöf, Per Jensen, F. J. Northrup, C. M. Rohlfing, E. A. Rohlfing, and T. J. Sears: Comment on: "The ν1 + ν3 combination mode of C3 in Ar and Kr matrices: evidence for a bent structure" by Jan Szczepanski and Martin Vala, J. Chem. Phys. 99, 7371 (1993), J. Chem. Phys. 101, 5413-5413 (1994). DOI: 10.1063/1.467329

72. S. A. Tashkun and Per Jensen: The Low-Energy Part of the Potential Function for the Electronic Ground State of NO2 Derived from Experiment, J. Mol. Spectrosc. 165, 173-184 (1994). DOI: 10.1006/jmsp.1994.1120

71. Per Jensen and P.R. Bunker: The Molecular Symmetry Group for Molecules in High Angular Momentum States, J. Mol. Spectrosc. 164, 315-317 (1994). DOI: 10.1006/jmsp.1994.1075

70. J. Vander Auwera, J.K. Holland, Per Jensen, and J.W.C. Johns: The ν6 Band System of C3O2 near 540 cm-1, J. Mol. Spectrosc. 163, 529-540 (1994). DOI: 10.1006/jmsp.1994.1045

69. I.N. Kozin and Per Jensen: Fourfold Clusters of Rovibrational Energy Levels for H2S Studied with a Potential Energy Surface Derived from Experiment, J. Mol. Spectrosc. 163, 483-509 (1994). DOI: 10.1006/jmsp.1994.1041

68. V. J. Barclay, I. P. Hamilton, and Per Jensen: Vibrational Levels of the Lowest-Lying Triplet and Singlet States of CH2 and NH2+, J. Chem. Phys. 99, 9709-9719 (1993). DOI: 10.1063/1.465453

67. U.G. Jørgensen and Per Jensen: The Dipole Moment Surface and the Vibrational Transition Moments of H2O, J. Mol. Spectrosc. 161, 219-242 (1993). DOI: 10.1006/jmsp.1993.1228http://dx.doi.org/10.1006/jmsp.1993.1228

66. I.N. Kozin and Per Jensen: Four-fold Clusters of Rovibrational Energy Levels in the Fundamental Vibrational States of H2Se, J. Mol. Spectrosc. 161, 186-207 (1993). DOI: 10.1006/jmsp.1993.1226

65. Per Jensen and I.N. Kozin: The Potential Energy Surface for the Electronic Ground State of H2Se Derived from Experiment, J. Mol. Spectrosc. 160, 39-57 (1993). DOI: 10.1006/jmsp.1993.1155

64. J. Gräf and Per Jensen: A Theoretical Model for the Rotation and Vibration of Symmetrical Triatomic Molecules with Strong Coupling between the Local Stretching Modes, J. Mol. Spectrosc. 159, 175-191 (1993). DOI: 10.1006/jmsp.1993.1116

63. I. N. Kozin, S. Klee, Per Jensen, O. L. Polyansky, and I. M. Pavlichenkov: The Far-Infrared Fourier Transform Spectrum of H2Se, J. Mol. Spectrosc. 158, 409-422 (1993). DOI: 10.1006/jmsp.1993.1085

62. L. Češpiva, V. Bonačič-Koutecký, J. Koutecký, Per Jensen, V. Hrouda, P. Čársky, V. Špirko, and P. Hobza: Ab Initio Calculations of the Rotation-Vibration Spectrum of Na3+, Collection of Czechoslovak Chemical Communications 58, 24-28 (1993). DOI: 10.1135/cccc19930024

61. D.P. Chong, D. Papoušek, Y.-T. Chen, and Per Jensen: Theoretical Vibrational and Rotational Energies and Intensities of the HNSi and DNSi Molecules, J. Chem. Phys. 98, 1352-1357 (1993). DOI: 10.1063/1.464302

60. P. R. Bunker, Per Jensen, S. C. Althorpe, and D. C. Clary: An ab initio calculation of the low rotation-vibration energies of the CO dimer, J. Mol. Spectrosc. 157, 208-219 (1993). DOI: 10.1006/jmsp.1993.1017

59. Per Jensen, C. McMichael Rohlfing, and J. Almlöf: Calculation of the Complete-active-space Self-consistent-field Potential-energy Surface, the Dipole Moment Surfaces, the Rotation-Vibration Energies and the Vibrational Transition Moments for C3 (X1Σg+), J. Chem. Phys. 97, 3399-3411 (1992). DOI: 10.1063/1.462976

58. P.R. Bunker, I.P. Hamilton, and Per Jensen: Rotation-Vibration Energies for the HO2 Molecule, J. Mol. Spectrosc. 155, 44-54 (1992). DOI: 10.1016/0022-2852(92)90547-2

57. V. Barone, Per Jensen, and C. Minichino: Vibro-rotational Analysis of Si2C from an Ab Initio Potential Energy Surface. A Comparison between Perturbative and Variational Methods, J. Mol. Spectrosc. 154, 252-264 (1992). DOI: 10.1016/0022-2852(92)90206-4

56. W.P. Kraemer, Per Jensen, B.O. Roos, and P.R. Bunker: Ab Initio Rotation-Vibration Energies and Intensities for the HNC+ Molecule, J. Mol. Spectrosc. 153, 240-254 (1992). DOI: 10.1016/0022-2852(92)90472-Z

55. Per Jensen, P.R. Bunker, V.C. Epa, and A. Karpfen: An ab initio calculation of the fundamental and overtone HCl stretching vibrations for the HCl dimer, J. Mol. Spectrosc. 151, 384-395 (1992). DOI: 10.1016/0022-2852(92)90574-8

54. Per Jensen, I. Paidarová, J. Vojtík, and V. Špirko: Theoretical Calculations of the Nuclear Quadrupole Coupling in the Spectra of D3+, H2D+, and HD2+, J. Mol. Spectrosc. 150, 137-163 (1991). DOI: 10.1016/0022-2852(91)90198-J

53. P.R. Bunker, Per Jensen, and A. Karpfen: The v1 + v2 = 4 Stretching Overtones of the HF Dimer and H-Atom Exchange, J. Mol. Spectrosc. 149, 512-518 (1991). DOI: 10.1016/0022-2852(91)90306-U

52. Per Jensen, P.R. Bunker, and A. Karpfen: An Ab Initio Calculation of the Nonadiabatic Effect on the Tunneling Splitting in Vibrationally Excited (HF)2, J. Mol. Spectrosc. 148, 385-390 (1991). DOI: 10.1016/0022-2852(91)90395-Q

51. Per Jensen, M.D. Marshall, P.R. Bunker, and A. Karpfen: An Ab Initio Close-Coupling Calculation of the Lower Vibrational Energies of the HCl Dimer, Chem. Phys. Lett. 180, 594-600 (1991). DOI: 10.1016/0009-2614(91)85016-P

50. Per Jensen, J. Oddershede, and J.R. Sabin: Geometric Dependence of the Mean Excitation Energy and Spectral Moments of Water, Phys. Rev. A 43, 4040-4043 (1991). DOI: 10.1103/PhysRevA.43.4040

49. P.R. Bunker, V.C. Epa, Per Jensen, and A. Karpfen: An Analytical ab initio Potential Energy Surface and the Calculated Tunneling Energies for the HCl Dimer, J. Mol. Spectrosc. 146, 200-219 (1991). DOI: 10.1016/0022-2852(91)90383-L

48. M.D. Marshall, Per Jensen, and P.R. Bunker: An Ab Initio Close-Coupling Calculation of the Lower Vibrational Energies of the HF Dimer, Chem. Phys. Lett. 176, 255-260 (1991). DOI: 10.1016/0009-2614(91)90026-6

47. A. Karpfen, P.R. Bunker, and Per Jensen: An Ab Initio Study of the Hydrogen Chloride Dimer: The Potential Energy Surface and the Characterization of the Stationary Points, Chem. Phys. 149, 299-309 (1991). DOI: 10.1016/0301-0104(91)90029-S

46. P.R. Bunker, Per Jensen, J.S. Wright, and I.P. Hamilton: Ab Initio Rotation-Vibration Energies and Intensities of the H2F+ Molecule, J. Mol. Spectrosc. 144, 310-322 (1990). DOI: 10.1016/0022-2852(90)90217-E

45. Per Jensen, P.R. Bunker, A. Karpfen, M. Kofranek, and H. Lischka: An Ab Initio Calculation of the Intramolecular Stretching Spectra for the HF Dimer and its D-Substituted Isotopic Species, J. Chem. Phys. 93, 6266-6280 (1990). DOI: 10.1063/1.458996

44. Per Jensen, R.J. Buenker, G. Hirsch, and S.N. Rai: An Ab Initio Calculation of the Rotation-Vibration Energies in the Electronic Ground State of NH2, Mol. Phys. 70, 443-454 (1990). DOI: 10.1080/00268979000101111

43. P.R. Bunker, Per Jensen, A. Karpfen, M. Kofranek, and H. Lischka: An Ab Initio Calculation of the Stretching Energies for the HF Dimer, J. Chem. Phys. 92, 7432-7440 (1990). DOI: 10.1063/1.458229

42. S. Civiš, C.E. Blom, and Per Jensen: Infrared Diode Laser Spectra and Potential Energy Curve for SH+, J. Mol. Spectrosc. 138, 69-78 (1989). DOI: 10.1016/0022-2852(89)90099-4

41. D.C. Comeau, I. Shavitt, Per Jensen, and P.R. Bunker: An Ab Initio Determination of the Potential Energy Surfaces and the Rotation-Vibration Energy Levels of Methylene in the Lowest Triplet and Singlet States and the Singlet-Triplet Splitting, J. Chem. Phys. 90, 6491-6500 (1989). DOI: 10.1063/1.456315

40. P.R. Bunker, Per Jensen, A. Karpfen, and H. Lischka: A Theoretical Calculation of the Rotation-Vibration Energies for Lithium Hydroxide LiOH, J. Mol. Spectrosc. 135, 89-104 (1989). DOI: 10.1016/0022-2852(89)90357-3

39. Per Jensen: The Potential Energy Surface for the C3 Molecule Determined from Experimental Data. Evidence for a Bent Equilibrium Structure, Collection of Czechoslovak Chemical Communications 54, 1209-1218 (1989). DOI: 10.1135/cccc19891209

38. Per Jensen: The Potential Energy Surface for the Electronic Ground State of the Water Molecule Determined from Experimental Data Using a Variational Approach, J. Mol. Spectrosc. 133, 438-460 (1989). DOI: 10.1016/0022-2852(89)90203-8

37. Per Jensen: Calculation of Rotation-Vibration Line Strengths for Triatomic Molecules Using a Variational Approach. Application to the Fundamental Bands of CH2, J. Mol. Spectrosc. 132, 429-457 (1988). DOI: 10.1016/0022-2852(88)90338-4

36. Per Jensen: A Variational Calculation of the Rotation-Vibration Energies for H2O From Ab Initio Data, J. Mol. Structure, 190, 149-161 (1988). DOI: 10.1016/0022-2860(88)80280-1

35. Per Jensen: Hamiltonians for the Internal Dynamics of Triatomic Molecules, J. Chem. Soc., Faraday Trans. 2, 84, 1315-1340 (1988). DOI: 10.1039/F29888401315

34. Per Jensen and P.R. Bunker: The Potential Surface and Stretching Frequencies of X3B1 Methylene (CH2) Determined from Experiment using the Morse Oscillator-Rigid Bender Internal Dynamics Hamiltonian, J. Chem. Phys. 89, 1327-1332 (1988). DOI: 10.1063/1.455184

33. Per Jensen and W.P. Kraemer: A Variational Calculation of the Rotation-Vibration Energies for CNC+ and CCN+, J. Mol. Spectrosc. 129, 216-222 (1988). DOI: 10.1016/0022-2852(88)90271-8

32. Per Jensen and W.P. Kraemer: A Comparison of Perturbative and Variational Rotation-Vibration Energies Calculated for HOC+ and C3 Using the Nonrigid Bender and MORBID Hamiltonians, J. Mol. Spectrosc. 129, 172-185 (1988). DOI: 10.1016/0022-2852(88)90268-8

31. Per Jensen: A New Morse Oscillator-Rigid Bender Internal Dynamics (MORBID) Hamiltonian for Triatomic Molecules, J. Mol. Spectrosc. 128, 478-501 (1988). DOI: 10.1016/0022-2852(88)90164-6

30. Per Jensen, P.R. Bunker, and A.D. McLean: An Ab Initio Calculation of the Rotation-Vibration Energies of Singlet and Triplet NH2+ Using the MORBID Hamiltonian, Chem. Phys. Lett. 141, 53-57 (1987). DOI: 10.1016/0009-2614(87)80091-X

29. A.D. McLean, P.R. Bunker, R.M. Escribano, and Per Jensen: An Ab Initio Calculation of ν1 and ν3 for Triplet Methylene (X3B1 CH2) and the Determination of the Vibrationless Singlet-Triplet Splitting Te (ã1A1), J. Chem. Phys. 87, 2166-2169 (1987). DOI: 10.1063/1.453141

28. V. Špirko, A. Čejchan, and Per Jensen: A New Morse-Oscillator Based Hamiltonian for H3+: Explicit Expressions for Some Vibrational Matrix Elements, J. Mol. Spectrosc. 124, 430-436 (1987). DOI: 10.1016/0022-2852(87)90152-4

27. P.R. Bunker, Per Jensen, W. P. Kraemer, and R. Beardsworth: Calculated Rotation-Vibration Energies for HOC+, J. Mol. Spectrosc. 121, 450-452 (1987). DOI: 10.1016/0022-2852(87)90061-0

26. J. Vojtík, V. Špirko, and Per Jensen: Vibrational Energy Levels of H3+ and Li3+ Based on the "Diatomics-in-Molecules" Potentials, Collection of Czechoslovak Chemical Communications 51, 2057-2062 (1986). DOI: 10.1135/cccc19862057

25. P.R. Bunker, Per Jensen, W.P. Kraemer, and R. Beardsworth: The Potential Surface of X3B1 Methylene (CH2) and the Singlet-Triplet Splitting, J. Chem. Phys. 85, 3724-3732 (1986). DOI: 10.1063/1.450944

24. W.P. Kraemer, B.O. Roos, P.R. Bunker, and Per Jensen: An Ab Initio Calculation of the Rotation-Vibration Energies of the X2Σ+ State of CCH Using the Nonrigid Bender Hamiltonian, J. Mol. Spectrosc. 120, 236-238 (1986). DOI: 10.1016/0022-2852(86)90085-8

23. Per Jensen and M. Winnewisser: Prediction of Higher Inversion Energy Levels for Isocyanamide H2NNC, Collection of Czechoslovak Chemical Communications 51, 1373-1381 (1986). DOI: 10.1135/cccc19861373

22. Per Jensen and J.W.C. Johns: The Infrared Spectrum of Carbon Suboxide in the ν6 Fundamental Region: Experimental Observation and Semirigid Bender Analysis, J. Mol. Spectrosc. 118, 248-266 (1986). DOI: 10.1016/0022-2852(86)90239-0

21. Per Jensen and V. Špirko: A New Morse-Oscillator Based Hamiltonian for H3+: Calculation of Line Strengths, J. Mol. Spectrosc. 118, 208-231 (1986). DOI: 10.1016/0022-2852(86)90236-5

20. R. Beardsworth, P.R. Bunker, Per Jensen, and W.P. Kraemer: Rotation-Vibration Energy Levels of H2O and C3 Calculated Using the Nonrigid Bender Hamiltonian, J. Mol. Spectrosc. 118, 50-63 (1986). DOI: 10.1016/0022-2852(86)90222-5

19. R. Beardsworth, P.R. Bunker, Per Jensen, and W.P. Kraemer: Ab Initio Rotation-Vibration Energy Levels of HOC+ Calculated Using the Nonrigid Bender Hamiltonian, J. Mol. Spectrosc. 118, 40-49 (1986). DOI: 10.1016/0022-2852(86)90221-3

18. Per Jensen and P.R. Bunker: The Nonrigid Bender Hamiltonian Using an Alternative Perturbation Technique, J. Mol. Spectrosc. 118, 18-39 (1986). DOI: 10.1016/0022-2852(86)90220-1

17. Per Jensen, V. Špirko, and P. R. Bunker: A New Morse-Oscillator Based Rotation-Vibration Hamiltonian for H3+: Extension to H2D+ and D2H+, J. Mol. Spectrosc. 115, 269-293 (1986) DOI: 10.1016/0022-2852(86)90047-0

16. V. Špirko, Per Jensen, P. R. Bunker, and A. Čejchan: The Development of a New Morse-Oscillator Based Rotation-Vibration Hamiltonian for H3+, J. Mol. Spectrosc. 112, 183-202 (1985). DOI: 10.1016/0022-2852(85)90203-6

15. R. A. Phillips, R. J. Buenker, R. Beardsworth, P. R. Bunker, Per Jensen, and W. P. Kraemer: An Ab Initio Study of the Rotation-Vibration Energy Levels of GeH2 in the ã3B1 State, Chem. Phys. Lett. 118, 60-63 (1985). DOI: 10.1016/0009-2614(85)85266-0

14. M. Morillon-Chapey, G. Guelachvili, and Per Jensen: Analysis of the High Resolution Spectrum of the ν2 and ν5 Bands of Methyl Chloride, Canad. J. Phys. 62, 247-253 (1984). DOI: 10.1139/p84-039

13. Per Jensen: C3O2 as a Semirigid Bender: The Degenerate ν5 State, J. Mol. Spectrosc. 104, 59-71 (1984). DOI: 10.1016/0022-2852(84)90245-5

12. M. Krȩglewski and Per Jensen: Determination of the Skeletal Bending Potential Function for SiH3NCO from the Microwave Spectrum, J. Mol. Spectrosc. 103, 312-320 (1984). DOI: 10.1016/0022-2852(84)90058-4

11. Per Jensen: HCNO as a Semirigid Bender: The Degenerate ν4 State, J. Mol. Spectrosc. 101, 422-439 (1983). DOI: 10.1016/0022-2852(83)90146-7

10. B. P. Winnewisser and Per Jensen: The Infrared Spectrum of Fulminic Acid, HCNO, in the ν4 Fundamental Region, J. Mol. Spectrosc. 101, 408-421 (1983). DOI: 10.1016/0022-2852(83)90145-5

9. Per Jensen: The Nonrigid Bender Hamiltonian for the Calculation of Rotation-Vibration Energies for a Triatomic Molecule, Computer Physics Reports 1, 1-55 (1983). DOI: 10.1016/0167-7977(83)90003-5

8. Per Jensen and P.R. Bunker: The Application of the Nonrigid Bender Hamiltonian to a Quasilinear Molecule, J. Mol. Spectrosc. 99, 348-356 (1983). DOI: 10.1016/0022-2852(83)90319-3

7. P. R. Bunker and Per Jensen: A Refined Potential Energy Surface for the X3B1 Electronic State of Methylene CH2, J. Chem. Phys. 79, 1224-1228 (1983). DOI: 10.1063/1.445927

6. Per Jensen, P.R. Bunker, and A.R. Hoy: The Equilibrium Geometry, Potential Function and Rotation-Vibration Energies of CH2 in the X3B1 Ground State, J. Chem. Phys. 77, 5370-5374 (1982). DOI: 10.1063/1.443785

5. Per Jensen and P. R. Bunker: The Geometry and Out-of-Plane Bending Potential Function of Thioformaldehyde in the Ã1A2 and ã3A2 Electronic States, J. Mol. Spectrosc. 95, 92-100 (1982). DOI: 10.1016/0022-2852(82)90241-7

4. Per Jensen and P. R. Bunker: The Geometry and Inversion Potential Function of Formaldehyde in the Ã1A2 and ã3A2 Electronic States, J. Mol. Spectrosc. 94, 114-125 (1982). DOI: 10.1016/0022-2852(82)90298-3

3. Per Jensen and S. Brodersen: The ν5 Raman Band of CH3CD3, J. Raman Spectrosc. 12, 295-299 (1982). DOI: 10.1002/jrs.1250120318

2. Per Jensen, S. Brodersen, and G. Guelachvili: Determination of A0 for CH335Cl and CH337Cl from the ν4 Infrared and Raman Bands, J. Mol. Spectrosc. 88, 378-393 (1981). DOI: 10.1016/0022-2852(81)90188-0

1. J. Kauppinen, Per Jensen, and S. Brodersen: Determination of the B0 Constant for C6H6, J. Mol. Spectrosc. 83, 161-174 (1980). DOI: 10.1016/0022-2852(80)90318-5

 

Electronic publications / Elektronische Veröffentlichungen

Jensen, Per:
Theoretische Chemie III: Methoden der Quantenchemie.
Gesamtes Dokument (pdf) (ca. 0,9 MB)

Jensen, Per:
Theoretische Chemie IV: Theoretische Spektroskopie.
Gesamtes Dokument (pdf) (ca. 1,0 MB)

Jensen, Per:
Mathematik A für Chemiker und Lebensmittelchemiker.
Gesamtes Dokument (pdf) (ca. 1,3 MB)

Jensen, Per:
Mathematik B für Chemiker.
Gesamtes Dokument (pdf) (ca. 571 kB)

Jensen, Per:
Einführung in die Theoretische Chemie - Vorlesungsskript
Gesamtes Dokument (pdf) (ca. 575 kB)

Jensen, Per:
Spektroskopische Methoden - Vorlesungen (Englisch)
Spectroscopic Methods - Lectures (English)
SM_Lecture1.pdf (pdf) (ca. 0.6 MB) | SM_Lecture2.pdf (pdf) (ca. 0.2 MB) | SM_Lecture3.pdf (pdf) (ca. 0.2 MB) | SM_Lecture4.pdf (pdf)(ca. 0.2 MB) | SM_Lecture5.pdf (pdf) (ca. 0.4 MB) | SM_Lecture6.pdf (pdf) (ca. 0.6 MB) | SM_Lecture7.pdf (pdf) (ca. 0.4 MB) | SM_Lecture8.pdf (pdf)(ca. 0.3 MB) | SM_Lecture9.pdf (pdf) (ca. 0.4 MB) | SM_Lecture10.pdf (pdf) (ca. 0.4 MB) | SM_Lecture11.pdf (pdf) (ca. 0.3 MB) | SM_Lecture12.pdf (pdf) (ca. 0.8 MB) | SM_Lecture13.pdf (pdf) (ca. 0.7 MB) | SM_Lecture14.pdf (pdf)(ca. 0.7 MB) | SM_Lecture15.pdf (pdf) (ca. 0.3 MB) |

Jensen, Per:
Molekülsymmetrie und Spektroskopie - Vorlesungen (Englisch)
Molecular Symmetry and Spectroscopy - Lectures (English)
mss-lecture1.pdf (pdf) (ca. 2.2 MB) | mss-lecture2.pdf (pdf)(ca. 1.1 MB) | mss-lecture3.pdf (pdf) (ca. 0.66 MB) | mss-lecture4.pdf (pdf) (ca. 1.1 MB) | mss-lecture5.pdf (pdf) (ca. 2.6 MB) | mss-lecture6.pdf (pdf) (ca. 0.6 MB) | mss-lecture7.pdf (pdf) (ca. 0.6 MB) | mss-lecture8.pdf (pdf) (ca. 0.5 MB) | mss-lecture9.pdf (pdf) (ca. 0.5 MB) | mss-lecture10.pdf (pdf) (ca. 0.5 MB) |

 

Massive Open Online Course / Internet-Vorlesung

1. Per Jensen: Fundamentals of Molecular Symmetry – The Lecture Course; DOI: 10.13140/2.1.1546.8481

 

Conference proceedings / Tagungsband-Beiträge

3. H. Schmiedt, S. Schlemmer, and Per Jensen: The Superrotor Model for the Rovibrational Motion of CH5+, An Extremely Flexible Molecule, Proceedings 2018, 2(1), 62-62 (2018); DOI: 10.3390/proceedings2010062

2. P. R. Bunker, W. P. Kraemer, T. Hirano, and Per Jensen: The Renner Effect in Triatomic Molecules, in: "International Conference of Computational Methods in Sciences and Engineering 2009", AIP Conf. Proc. 1504, 467-479 (2012); DOI: 10.1063/1.4771743

1. S. N. Yurchenko, W. Thiel, and Per Jensen: Rotation-Vibration Energy Level Cluster Formation in Three- and Four-atomic Molecules, in: "International Conference of Computational Methods in Sciences and Engineering 2009", AIP Conf. Proc. 1504, 491-494 (2012); DOI: 10.1063/1.4771747

 

Other Publications / Sonstige Veröffentlichungen

10. Per Jensen, J. Oomens, O. Asvany, S. Thorwirth, and H.S.P. Müller: Laboratory Spectroscopy for Astrophysics: Festschrift for Stephan Schlemmer, J. Mol. Spectrosc. in press (2021). DOI: https://doi.org/10.1016/j.jms.2021.111492

9. Per Jensen: The Universe - – What is there? How much is there? BUW.OUTPUT, Forschungsmagazin der Bergischen Universität Wuppertal, 01/2020, 6-11. Download text English / Deutsch.

8. Per Jensen and S. N. Yurchenko: Theoretische Rotations-Schwingungsspektroskopie an der Bergischen Universität Wuppertal, G.I.T. Labor-Fachzeitschrift 1/2013, 8-9.

7. Per Jensen, Š. Urban, K. M. T. Yamada, and J. T. Hougen: PRAHA2008: The 20th International Conference on High Resolution Molecular Spectroscopy, Prague, Czech Republic, September 2-6, 2008, J. Mol. Spectrosc. 256, 1-3 (2009).

6. Per Jensen and Š. Urban: PRAHA2006: The 19th International Conference on High Resolution Molecular Spectroscopy, Prague, Czech Republic, August 29-September 2, 2006, J. Mol. Spectrosc. 243, 103-104 (2007).

5. Š. Urban, T. F. Giesen, and Per Jensen: Biography of Professor Gisbert Winnewisser, J. Mol. Structure 795, 1-3 (2006).

4. Per Jensen, Frank C. De Lucia, and Koichi M. T. Yamada: Brenda and Manfred Winnewisser, J. Mol. Structure 695-696, 1-3 (2004).

3. Per Jensen: Manfred Winnewisser zum 65. Geburtstag, Bunsen-Magazin 1/99, 33-35 (1999).

2. Per Jensen: Spektroskopie mit dem Supercomputer: Das ungewöhnliche Rotations-Schwingungsspektrum des Moleküls H2Se, LOGIN (information newsletter published by the computing center of the Justus Liebig University Giessen, ISSN 0174 0067) 2/93, 50-68 (1993).

1. Per Jensen: High Resolution FT-IR Spectroscopy with a PC. Processing Data from a BRUKER IFS120 HR High Resolution Spectrometer Using a Personal Computer, BRUKER Report 1/1989, 6-9 (1989).

Weitere Infos über #UniWuppertal: